The Integrated GPU

For all but one of the processors, integrated graphics is the name of the game. AMD configures the integrated graphics in terms of Compute Units (CUs), with each CU having 64 streaming processors (SPs) using GCN 1.3 (aka GCN 3.0) architecture, the same architecture as found in AMD’s R9 Fury line of GPUs. The lowest processor in the stack, the A6-9500E, will have four CUs for 256 SPs, and the A12 APUs will have eight CUs, for 512 SPs. The other processors will have six CUs for 384 SPs, and in each circumstance the higher TDP processor typically has the higher base and turbo frequency.

AMD 7th Generation Bristol Ridge Processors
  GPU GPU SPs GPU Base GPU Turbo TDP
A12-9800 Radeon R7 512 800 1108 65W
A12-9800E Radeon R7 512 655 900 35W
A10-9700 Radeon R7 384 720 1029 65W
A10-9700E Radeon R7 384 600 847 35W
A8-9600 Radeon R7 384 655 900 65W
A6-9500 Radeon R5 384 720 1029 65W
A6-9500E Radeon R5 256 576 800 35W
Athlon X4 950 - - - - 65W

The new top frequency, 1108 MHz, for the A12-9800 is an interesting element in the discussion. Compared to the previous A10-7890K, we have a +28% increase in raw GPU frequency with the same number of streaming processors, but a lower TDP. This means one of two things – either the 1108 MHz frequency mode is a rare turbo state as the TDP has to be shared between the CPU and APU, or the silicon is sufficient enough to maintain a 28% higher frequency with ease. Obviously, based on the overclocking results seen previously, it might be interesting to see how the GPU might change in frequency without a TDP barrier and with sufficient cooling. For comparison, when we tested the A10-7890K in Grand Theft Auto at a 1280x720 resolution and low-quality settings, we saw an average 55.20 FPS.

Grand Theft Auto V on Integrated Graphics

Bearing in mind the change in the cache configuration moving to Bristol Ridge, moving from a 4 MB L2 to a 2 MB L2 but increasing the DRAM compatibility from DDR3-2133 to DDR4-2400, that value should move positive, and distinctly the most cost effective part for gaming.

Each of these processors supports the following display modes:

- DVI, 1920x1200 at 60 Hz
- DisplayPort 1.2a, 4096x2160 at 60 Hz (FreeSync supported)
- HDMI 2.0, 4096x2160 at 60 Hz
- eDP, 2560x1600 at 60 Hz

Technically the processor will support three displays, with any mix of the above. Analog video via VGA can be supported by a DP-to-VGA converter chip on the motherboard or via an external dongle.

For codec support, Bristol Ridge can do the following (natively unless specified):

- MPEG2 Main Profile at High Level (IDCT/VLD)
- MPEG4 Part 2 Advanced Simple Profile at Level 5
- MJPEG 1080p at 60 FPS
- VC1 Simple and Main Profile at High Level (VLD), Advanced Profile at Level 3 (VLD)
- H.264 Constrained Baseline/Main/High/Stereo High Profile at Level 5.2
- HEVC 8-bit Main Profile Decode Only at Level 5.2
- VP9 decode is a hybrid solution via the driver, using CPU and GPU

AMD still continues to support HSA and the arrangement between the Excavator v2 modules in Bristol Ridge and the GCN graphics inside is no different – we still get Full 1.0 specification support. With the added performance, AMD is claiming equal scores for the A12-9800 on PCMark 8 Home with OpenCL acceleration as a Core i5-6500 ($192 tray price), and the A12-9800E is listed as a 17% increase in performance over the i5-6500T. With synthetic gaming benchmarks, AMD is claiming 90-100% better performance for the A12 over the i5 competition.

An Unusual Launch Cycle: OEMs now, Individual Units Later Understanding Connectivity: Some on the APU, Chipset Optional
Comments Locked

122 Comments

View All Comments

  • jardows2 - Friday, September 23, 2016 - link

    Really looking forward to some actual benchmarks. I really am itching to build a new office computer, and right now, the i3-6100 is the only realistic chip, since I won't be doing much gaming on the system. If the new A12 and A10 can even come close to matching the i3 in CPU tasks, I'd be more than happy to snag that up, as the graphics will be nice, and the upgradability to Zen later if that processor pans out.
  • Danvelopment - Saturday, September 24, 2016 - link

    I'm writing an article on that at the moment (different site built around the economics of modern tech). Conclusion is unless you need specific Skylake tech on a desktop (m.2, DDR4, ECC, IGP, SGX, MPX or AVX2), get an Ivy Bridge i5/i7. Ex-lease Ivy machines are pretty much being sold for pennies these days (less than a new Pentium machine) and a quad Ivy i5/i7 will almost always demolish a Skylake i3 on the CPU side.

    Use the leftover cash for a couple SSDs and beer.
  • serendip - Saturday, September 24, 2016 - link

    And so comes the end of the desktop computer, as people refurbish old computers and use them for years instead of buying new ones every year. That Ivy i5 system paired with lots of cheap RAM and a cheap SATA SSD would be more than fast enough for office tasks for years to come.

    Could be good for AMD though. They could make good-enough APUs for mainstream usage at a price point Intel can't touch. It's a race to the bottom and AMD could conceivably win.
  • LordanSS - Saturday, September 24, 2016 - link

    Still rocking my 3770k.

    Skylake wasn't a good enough performance bump for my use cases, considering platform price. Kaby Lake has no IPC boost, and who knows when Cannonlake will arrive.

    Waiting on Zen to arrive so I can take a look at benchmarks. Even if it's "slower" than Skylake, if the platform cost is right it would be a quite viable option.
  • Danvelopment - Sunday, September 25, 2016 - link

    Precisely, I just overclocked my 2500K to 4.5GHz the other day and it will definitely last me until Intel gets its act together and puts a focus on performance improvements again.

    If AMD were competitive, Intel would probably be pushing a lot more performance on successive generations. Instead they're cashing in by shrinking dies and moving more components on die, while only incrementally improving performance.

    So really it's a good thing, suddenly competing with the secondhand market will hopefully see a large performance boost in future generations.
  • patrickjp93 - Tuesday, September 27, 2016 - link

    @Danvelopment Please take a look at Agner Fog's x86 instruction latency tables. Intel can't squeeze blood from a rock and make instructions take less than 1 cycle. No one can.
  • patrickjp93 - Tuesday, September 27, 2016 - link

    Continuing from the above, that's why SIMD and MIMD instructions were created.
  • Danvelopment - Tuesday, September 27, 2016 - link

    So you're saying we've hit the limit for processor performance and there's nothing new anyone can do?

    I find that hard to believe, especially as innovation is not required to increase performance, hell if they were desperate they could bring i3 to a quad minimum and flop four more cores into 5 and 7 and call it a day. It's not innovation but it's a significant increase in performance potential.

    Instead we've gone from a 216mm2 die to a 122mm2 die.

    If it were neck and neck, Intel wouldn't look at AMD and go, "whelp, nothing we can do".
  • Danvelopment - Tuesday, September 27, 2016 - link

    216 is Sandy Bridge and 122 is Skylake.
  • jardows2 - Monday, September 26, 2016 - link

    Where can I find these "pennies" for Ivy i5? Best I'm finding is on fleaBay for about $200 shipped. With 4GB RAM and too small of a hard drive. After I upgrade the hard drive and RAM to where I need, I have a used computer that costs only about $40 less than if I build a new i3 system. And demolish? I'm not so sure about that:

    http://www.anandtech.com/bench/product/1783?vs=702

    Beat? Yes, but I wouldn't say demolish.

Log in

Don't have an account? Sign up now